Monitoring epidemiologic surveillance data using hidden Markov models.
نویسندگان
چکیده
The analysis of routinely collected surveillance data is an important challenge in public health practice. We present a method based on a hidden Markov model for monitoring such time series. The model characterizes the sequence of measurements by assuming that its probability density function depends on the state of an underlying Markov chain. The parameter vector includes distribution parameters and transition probabilities between the states. Maximum likelihood estimates are obtained with a modified EM algorithm. Extensions are provided to take into account trend and seasonality in the data. The method is demonstrated on two examples: the first seeks to characterize influenza-like illness incidence rates with a mixture of Gaussian distributions, and the other, poliomyelitis counts with mixture of Poisson distributions. The results justify a wider use of this method for analysing surveillance data.
منابع مشابه
Introducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملAbnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملSpeaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 18 24 شماره
صفحات -
تاریخ انتشار 1999